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RESUMO 

 
O objetivo geral deste estudo foi avaliar se a aplicação foliar de 24-Epibrassinolide (EBR) 
pode mitigar o estresse oxidativo em plantas de soja submetidas a alta e baixa adição de Mg e 
avaliar suas possíveis repercussões nos comportamentos anatômicos, nutricionais, 
bioquímicos, fisiológicos e na biomassa. Para isso, o experimento seguiu um delineamento 
fatorial completamente casualizado com duas concentrações de 24-Epibrassinolide (0 e 100 
nM EBR, descrito como - EBR e + EBR, respectivamente) e três suprimentos de Mg (0,0225, 
2,25 e 225 mM de MgCl2, descrito como baixo, controle e alto suprimento de Mg). De modo 
geral, suprimentos baixos e altos de Mg promoveram efeitos deletérios no metabolismo 
antioxidante, pigmentos fotossintéticos e mudanças negativas nos parâmetros anatômicos 
avaliados. No entanto, nos tratamentos com baixo e alto Mg + EBR foram observados 
aumentos na espessura da epiderme da raiz, endoderme, córtex, cilindro vascular e 
metaxilema. De igual modo o EBR promoveu incrementos na densidade de estômatos, 
espessura da epiderme foliar, espessura do parênquima em paliçada e esponjoso, confirmando 
a ação do EBR sobre a divisão celular e diferenciação dos tecidos. Plantas expostas a baixo e 
alto Mg e pulverizadas com EBR apresentaram melhorias no acumulo de Mg e conteúdo de 
macronutrientes (K, Ca, S) e micronutrientes (Mn, Cu e Bo) sugerindo que este esteróide 
melhorou a absorção, transporte e acúmulo de nutrientes nos tecidos avaliados. O EBR 
promoveu aumentos das atividades das enzimas antioxidantes em plantas sob estresse de Mg, 
revelando o efeito benéfico de mitigar os danos oxidativo aos fotossistemas e membranas dos 
cloroplastos. Aliado a isto, o EBR mitigou os impactos negativos induzidos pela baixa e alta 
concentração de Mg na taxa de fotossíntese liquida e carboxilação instantânea associados aos 
incrementos obtidos na taxa de transporte de elétrons e densidade estomática. Concluímos que 
o EBR reduziu o estresse oxidativo ocasionado pela baixa e alta adição de Mg com 
repercussões positivas em enzimas antioxidantes, pigmentos fotossintéticos e biomassa da 
raiz e folha. 
 
Palavras-chave: Anatomia de plantas, Características fotossintéticas, 24-epibrassinolideo, 
Estresse oxidativo. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 ABSTRACT 
 
The general objective of this study was to evaluate whether the foliar application of 24-
epibrassinolide (EBR) can mitigate oxidative stress in soybean plants submitted to high and 
low addition of Mg and to evaluate its possible repercussions on anatomical, nutritional, 
biochemical, physiological and morphological behaviors. For this, the experiment followed a 
completely randomized factorial design with two concentrations of 24-Epibrassinolide (0 and 
100 nM EBR, described as - EBR and + EBR, respectively) and three Mg supplies (0.0225, 
2.25 and 225 mM Mg, described as low, control and high Mg supply). In general, low and 
high Mg supplies promoted deleterious effects on antioxidant metabolism, photosynthetic 
pigments and negative changes in the anatomical parameters evaluated. However, in 
treatments with low and high Mg + EBR, increases in the thickness of the epidermis of the 
root, endoderm, cortex, vascular cylinder and metaxylem were observed. Likewise, EBR 
promoted increases in stomata density, leaf epidermis thickness, palisade and spongy 
parenchyma thickness, confirming the action of EBR on cell division and tissue 
differentiation. Plants exposed to low and high Mg and sprayed with EBR showed 
improvements in the accumulation of Mg and content of macronutrients (K, Ca, S) and 
micronutrients (Mn, Cu and Bo) suggesting that this steroid improved the absorption, 
transport and accumulation of nutrients in the evaluated tissues. The EBR promoted increases 
in the activities of antioxidant enzymes in plants under Mg stress, revealing the beneficial 
effect of mitigating oxidative damage to chloroplast photosystems and membranes. Allied to 
this, the EBR mitigated the negative impacts induced by the low and high concentration of 
Mg in the liquid photosynthesis rate and instant carboxylation associated with the increments 
obtained in the electron transport rate and stomatal density. We conclude that EBR reduced 
oxidative stress caused by low and high addition of Mg with positive repercussions on 
antioxidant enzymes, photosynthetic pigments and root and leaf biomass. 
 Keywords: Plant anatomy, Photosynthetic characteristics, 24-epibrassinolideo, Oxidative 
stress.  
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CONTEXTUALIZATION 
Soybean [Glycine max (L.) Merr.], it is an annual plant, herbaceous, erect, autogamous, has a 
carbon fixation mechanism of type C3, and belongs to Fabaceae and Papilionoideae. 
Cultivated soybeans were domesticated from wild Glycine soja approximately 5.000 to 6.000 
years ago in China, their geographical distribution is limited to central and northern East Asia, 
which includes China, Korea, Japan and the Far East of Russia (WANG; LI; LIU, 2012). 
According to Da Silva et al. (2017), soybean has three types of leaves during its development, 
cotyledonary, unifoliolate, trifoliolate and sessile leaves. The cotyledon leaves have an 
elliptical oval shape and remain until their reserves are depleted, to the point that they turn 
yellow, wither and fall. The unifoliolates are primary leaves with opposite disposition, narrow 
base and auricular, truncated or lanceolate shape. The trifoliate, are alternately arranged, with 
long petioles and composed of three large leaflets, usually oval. The flowers are axillary or 
terminal, papillary, white or violet, depending on the variety. The fruits are oblong and 
hanging pods, pubescent, with a number of grains varying from one to five per pod. 
Its cycle, which corresponds to the number of days from emergence to maturation, can take 75 
for the earliest cultivars and 200 days for the later ones (BOREM, 1999). The stem has 
hairiness, is erect, often branched, with a height between 30 and 200 cm and can present 
indeterminate, semi-determined or determined growth (MÜLLER, 1981). The root system is 
pivoting, with a main root and profuse lateral branches with the ability to establish symbiosis 
with bacteria fixing atmospheric nitrogen (CARDOSO et al. 2006). 
The soybean cycle is divided into stages of development according to the methodology 
proposed by Fehr and Caviness (1977), and distinguishes the stages of soybean development 
between vegetative stage, represented by the letter V and reproductive stage by the letter R. 
The letters V and R follow with numbers to determine the specific stage the plant is in. 
Exceptions are the emergency and opening stages of the cotyledons as the letters VE and VC 
respectively represent them. 
For the vegetative stage count, the number of nodes that start from the unifoliate leaves 
immediately above the cotyledon nodes (V1, V2, V3, ..., Vn) is taken into account. The 
reproductive stages describe the period of flowering until the maturation of the grain, ranging 
from R1 to R8 (EMBRAPA, 2020). 
Soybean is an important oilseed crop, its seeds are used as a source of protein in both human 
and animal food, and it is used as a raw material for biofuels. It is responsible for about 56% 
of the total oilseed production, 25% of the global edible oil and about two thirds of the protein 
concentrate for animal feed. According to FAO (2020) global soybean production is estimated 
at 337.9 million tons for the 2019/2020 harvest, with the main world producers of soybean in 
order of importance, the United States of America, Brazil, Argentina, China and India. In 
Brazil, the first report on the emergence of soybeans through its cultivation is from 1882, in 
the state of Bahia (BLACK, 2000). Then, Japanese immigrants took it to São Paulo, and in 
1914 soybeans were introduced in the state of Rio Grande do Sul, which was, finally, the 
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place where the varieties brought from the United States, best adapted to the edaphoclimatic 
conditions, mainly in relation to the photoperiod (BONETTI, 1981). 
According to CONAB (2020), the harvest estimate for Brazil's 2018/19 crop is 120.9 million 
tons, a historic record, representing an increase of 5.1% in relation to the previous crop, with 
the states of Mato Grosso, Paraná, Goiás, São Paulo, Tocantins, Maranhão, Rondônia and 
Distrito Federal presented the highest productivity. Brazilian soy consumption is expected to 
be 47 million tons, which corresponds to 37,75% of total production, exports for the 
2019/2020 harvest are expected to total 76 million tons, which represents 61% of Brazilian 
production (CONAB, 2020). 
The State of Pará is the second largest producer of soybeans in the northern region. In the 
2018/19 harvest, the state of Pará produced 1.859 million tons of soybeans, 8,8% higher than 
the previous harvest (CONAB, 2020). Currently, Pará has twelve soy producing microregions, 
Paragominas being the main one, responsible for 65% of the production in the state and also 
being the main export microregion, with a turnover of US$ 458 million in 2017 (SIDRA / 
IBGE, 2019). 
Soy is in full agricultural expansion in Brazil, especially in the North and Northeast regions 
(ODERICH, 2020), however the cultivations occur in soils of the oxisol and argisol type, 
predominant in these regions, these soils are characterized by high weathering, leaching, 
aluminum contents and low cation exchange capacity (CTC), soils with low Mg2+ content 
available to plants (LUMBRERAS et al., 2015). 
Magnesium (Mg) is an essential element in plants, it is a constituent of the chlorophyll 
molecule and acts in phosphorylation, aggregation of ribosome subunits, translocation of 
photoassimilates and in the activation of multiple enzymes, such as glutathione synthetase, 
phosphoenolpyruvate (PEP) carboxylase and Rubisco (ribulose 1,5 bisphosphate oxidase/ 
carboxylase). Therefore, crop growth and productivity are highly affected by Mg deficiency in 
areas of intensive agricultural production (ALTARUGIO et al., 2017). 
Several factors can cause Mg deficiency in plants, such as a low concentration of Mg in the 
soil-forming rocks, excessive acidity, high levels of aluminum or manganese, salinity, low 
availability of water in the soil and low transpiration of the plants (GERENDÁS; FÜHRS, 
2013). The imbalance in the relationship between calcium (Ca), potassium (K) and 
magnesium is also pointed out as one of the main causes of Mg deficiency (MEIRELES; 
SILVA, 2013). Mg is mainly supplied by liming, which cannot always supply sufficient 
amounts of this element to plants, as many limestones have low Mg levels, in addition to low 
reactivity and solubility (ALTARUGIO et al., 2017). 
According to EMBRAPA (2020), liming, despite being a mandatory practice in the 
implantation of crops, is not a common practice in the State of Pará, the main factors being 
the difficulties of operationalizing its application in large areas due to the excessive rainfall in 
the region, price of the product in the market burdened by the cost of transportation and the 
lack of professionals in the field of soil fertility to raise awareness of the importance of 
applying soil correctives. 
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The absorbed Mg is transported in the plant in the form of Mg2+, and accumulates in the 
young tissues of the plants due to its high mobility (WATERS, 2011). Magnesium deficiency 
in soy is characterized by having, in the initial stage of the deficiency, short plants and pale 
green in appearance, and if it continues, the visual symptoms progress to pale yellow 
internerval chlorosis in the old leaves, as the symptoms progress, pale yellow chlorosis turns 
into pale brown necrosis in the internerval regions (APARECIDA VIECELLI, 2017). The 
mechanism of Mg2+ absorption by the roots occurs mainly by mass flow and root interception, 
so it is highly dependent on the availability of water in the soil and transpiration of plants 
(EMBRAPA 2020). 
The main targets of magnesium deficiency are photosynthesis and sugar transport from the 
source organs to the drains (ELKHOUNI; ZORRIG; SMAOUI, 2016). Mg is required for the 
synthesis and structural stability of chlorophyll (ALBUS et al., 2012), and in the 
photochemical phase of photosynthesis, the synthesis of ATP in chloroplasts is increased by 
the extreme supply of Mg, as this process has an absolute requirement for Mg as a binding 
component between ADP and the ATPase enzyme (KIRKBY, 2011). In the chemical phase of 
photosynthesis, the modulation of the Rubisco enzyme requires Mg to increase the enzyme's 
affinity for its substrate (CO2) and the rate of new enzyme synthesis (CAKMAK; YAZICI, 
2010). 
Magnesium-deficient plants have lower root growth and lower root/shoot ratio, this is because 
the loading of carbohydrates in the phloem is an active process, dependent on the 
consumption of ATP, which in turn also requires Mg (BARROSO, 2013). The accumulation 
of non-structural sugars in the leaves and the change in the carbohydrate partition observed 
under Mg deficiency are attributed to an inhibition of phloemic loading (HAWKESFORD et 
al. 2012). 
Stress due to high concentrations of magnesium are not common, but serpentine soils and 
semi-arid regions can have a high Mg: Ca ratio and thus affect the growth and development of 
crops, as high concentrations of Mg2+ restricts water absorption by the roots, causing high 
osmolarity, ionic toxicity, and as a consequence oxidative stress, decreased nutrient 
availability, especially Ca2+, K+ and Mn2+ and reductions in the growth rate (GERENDÁS; 
FÜHRS, 2013; NIU et al. 2018; PARIHAR; SINGH; SINGH; 2015). 
According to EMBRAPA (2020), the references of Mg2+ contents for the purpose of 
interpreting the chemical analysis of the soil, for soybean crops are: low <0.5 cmolc/dm3 
medium 0,5-0,9 cmolc/dm3 and high > 0,9 cmolc/dm3 for soils with CTC <5 cmolc/dm3. And 
for soils with CTC ≥ 5 cmolc/dm3 the reference levels are, low <0,9 cmolc/dm3; medium 0,9-
2,5 cmolc/dm3 and high> 2,5 cmolc/dm3. And the Mg2+ reference values for interpreting the 
results of the analysis of leaves, without petiole, of soybeans are: low <2,8g/ kg; enough 2,8 
to 5,0 g/ kg and high> 5,0 g/ kg. 
A possible solution to the damage caused by low and high addition of Mg2+ in plants may be 
the use of 24-epibrassinolide (EBR), since the ability of this steroid to modulate positive 
responses to situations of abiotic stresses such as stimulation of the antioxidant system 
(FARIDUDDIN et al., 2015), increased levels of chlorophyll (FERREIRA et al., 2018), 
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efficiency of photosystem II (YUSUF; FARIDUDDIN; AHMAD, 2011), and growth rate (DA 
FONSECA ; DA SILVA; LOBATO, 2020). 
Brassinoids (BRs) are polyhydroxylated plant hormones, active in very low concentrations, 
indicated by their pleiotropic involvement in various physiological processes and defense 
strategies during stress in plants (BAJGUZ, 2010; COSTA et al., 2018; KANWAR et al., 
2017). 
Brassinosteroids were found in several species of plants (including algae), distributed in 
different organs, being pollens, immature seeds, roots and flowers, which had the highest 
steroid content (TANG; HAN; CHAI, 2016). The first works were carried out by Mitchell and 
colleagues in 1970, and identified a steroid substance in Brassica's pollen and called it 
'brassinas' (MITCHELL et al. 1970). Following years, it was extracted chemically by Grove et 
al. (1979) of rapeseed plant pollen (Brassica napus L.) which was called 'brassinolide'. 
Currently, about 70 types of natural analogues of brassinolide have been isolated from tissues 
of various plant species (KUTSCHERA; WANG, 2012), with emphasis on brassinolide, 24-
epibrassinolide and 28-homobrassinolide, which have been shown to be the most biologically 
active, and widely used in physiological studies of cultivated plants (BAGHEL et al. 2019). 
The biosynthesis of BRs in plants occurs from campesterol, sinosterol and cholesterol. In 
general, the route starts with sterol campesterol, which is derived from cycloartenol. 
Campesterol is converted to castasterone through two routes called early route and late 
oxidation route at C-6, the two routes converge to castasterone which is then converted to 
brassinolide, the most active BR (BAGHEL et al., 2019). 
The proposed model to explain brassinosteroid signaling in plants includes the direct binding 
of a BR molecule in the extracellular domain of the plasma membrane to the kinase receptor 
rich in leucine repeats called BRASSINOSTEROID INSENSITIVE 1 (BRI1) (CLOUSE; 
LANGFORD; MCMORRIS, 1996) . Research with A. thaliana has shown that BRs are 
perceived by receptor kinases that transduce the signal from the cell surface to the nucleus by 
an intracellular cascade of protein-protein interactions, involving kinases, phosphatases, 14-3-
3 proteins and nuclear transcription factors, in addition, BR signaling is regulated by the 
plant's endocytic machinery because the increased endosomal location of the BR receptor 
increases signaling (CODREANU; RUSSINOVA, 2011). 
Studies indicate that BRs give tolerance to plants to abiotic stresses, stimulating the activity of 
antioxidant enzymes and promoting the maintenance of the photosynthetic rate (AHANGER 
et al., 2018; RAMAKRISHNA; RAO, 2015; WANG; LI; ZHANG, 2012). Research by DOS 
SANTOS et al. (2020) revealed that 24-epibrassinolide mitigated oxidative stress induced by 
low and high Zn concentration in Glycine max. Likewise, RODRIGUES et al. (2020) found 
that the exogenous application of EBR (100 nM) promoted the maintenance of photosynthetic 
pigments (Chl a, Chl b, total Chl and Car) and less accumulation of EROs (O2- and H2O2) in 
soybean plants (Glycine max) with deficiency and toxicity of Mn. 
The general hypothesis of the work considers the deleterious effects promoted by the 
inadequate supply of Mg2+ (deficiency or toxicity) on antioxidant metabolism, gas exchange, 
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photosynthetic pigments and possible repercussions on the anatomy and growth of Glycine 
max plants. On the other hand, EBR represents a biodegradable substance that efficiently 
modulates tolerance in plants exposed to deficiency or toxicity. 
In this sense, EBR can be a possible solution to mitigate the damage caused by deficiencies 
and excess of Mg in plants because this steroid has a set of actions linked to increases in 
nutrient content (YUAN et al. 2015), elimination of reactive species oxygen (DA SILVA 
CUNHA et al. 2020) and biomass stimulation (PEREIRA et al. 2018). Therefore, the general 
objective of this study was to evaluate whether the foliar application of EBR can mitigate 
oxidative stress in soybean plants submitted to high and low addition of Mg and to evaluate 
its possible repercussions on anatomical, nutritional, biochemical, physiological and 
morphological behaviors. 
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24-epibrassinolide simultaneously delays chlorophyll degradation and stimulates the photosynthetic 90 
machinery in magnesium stressed soybean plants 91 
 92 
Abstract 93 
Adverse effects caused by inadequate magnesium (Mg) supply (deficiency or excess) often cause oxidative stress 94 
into chloroplast, declining in photosynthetic activity. On the other hand, 24-Epibrassinolide (EBR) is a plant 95 
growth regulator natural, biodegradable and ecologically viable, with multiple roles in plant metabolism. This 96 
research aims to answer if the foliar application of EBR (1) can delay the chlorophyll degradation and/or (2) to 97 
mitigate the oxidative stress on photosynthetic machinery in magnesium stressed soybean plants. The experiment 98 
followed a completely randomized factorial design with two concentrations of 24-Epibrassinolide (0 and 100 nM 99 
EBR, described as - EBR and + EBR, respectively) and three Mg supplies (0.0225, 2.25 and 225 mM Mg, 100 
described as low, control and high supply of Mg). Inadequate Mg supplies (deficiency and excess) negatively 101 
interfered on photosynthetic pigments, chlorophyll fluorescence and gas exchange. However, exogenous EBR 102 
improved the antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase and peroxidase), 103 
protecting against oxidative stress and delaying the chlorophyll degradation in plants grown with low and high Mg 104 
supplies. Concomitantly, plants sprayed with this steroid had increases in Mg contents, improving the 105 
photochemical efficiency and gas exchange, because the Mg exercises essential role during light capture process. 106 
 107 
Keywords Brassinosteroids ● Chloroplastic pigment ● Essential macronutrient ● Glycine max ● Photosystem II 108 
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Introduction 128 
Soybean (Glycine max (L.) Merr.) is one of the most important leguminous in the world due to high levels 129 

of oils (18 to 20%) and proteins (35 to 40%) contained in its seeds, being a fundamental crop for human nutrition, 130 
animal feed and energy source in biofuels (Teixeira et al. 2020). Global soybean production reached 364 million 131 
tons in 2018/2019 harvest, with the United States, Brazil and Argentina as the main producers (Marocco and Milo 132 
2019). 133 

Magnesium (Mg) is one of the essential macronutrients for plants and plays key functions in several 134 
physiological processes, including photosynthesis. Mg is the central element of the chlorophyll molecule and 135 
activation of the enzyme ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCo) (Assunção et al. 2020; 136 
Gransee and Führs 2013). In parallel, this ion has multiple metabolic functions, including cofactor in several 137 
enzymes and an essential component in proteins, for example, in the synthesis of ATP (Verbruggen and Hermans 138 
2013; Wang et al. 2020), a important step during respiration and synthesis of organic compounds (Shameer et al. 139 
2019). 140 

Plants exposed to low magnesium supply often presents decreases in carbon dioxide (CO2) assimilation 141 
(Yang et al. 2012), reductions in leaf pigments and chlorophyll fluorescence (Zhou et al. 2011), excessive 142 
accumulation of carbohydrates in the leaves (Mengutay and Ceylan 2013), significant reductions in the electron 143 
transport rate (Tang et al. 2012), increase in the production of reactive oxygen species (ROS) and photooxidative 144 
damages (Chao et al. 2012). On the other hand, high cytoplasmic concentrations of Mg2+ block the K+ channels in 145 
internal membranes of the chloroplasts, acidifying the stroma by preventing the removal of H+ ions, which 146 
inactivate enzymes linked to carbon fixation, potentiating the production of free radicals and generating damages 147 
in cellular structures (Venkatesan and Jayaganesh 2010). Nutritionally, Mg excess interferes negatively on the 148 
absorption and transport of other essential elements, mainly Ca, K and Mn (Conn et al. 2011; Hermans et al. 149 
2013). 150 

Brassinosteroids (BRs) are plant growth regulators, with multiple roles in plant metabolism (Ahammed et 151 
al. 2020). Exogenous application of EBR can mitigate damages to plants exposed to abiotic stresses, because this 152 
molecule exhibit beneficial effects on antioxidant enzymes (Amraee et al. 2020), increments in chlorophyll levels 153 
(Tadaiesky et al. 2020), increases in photosystem II efficiency (Kolomeichuk et al. 2020), stimulation on gas 154 
exchange (Wei and Li 2016) and higher biomass (Ribeiro et al. 2019). 155 

Our hypothesis is that the adverse effects caused by inadequate Mg supply (deficiency or excess) cause an 156 
increase in oxidative stress and a decline in photosynthetic activity. On the other hand, EBR is a natural and 157 
biodegradable molecule that exhibits improvements in the performance of photosystem II, gas exchange and 158 
activity of antioxidant enzymes (Cai et al. 2020; Cunha et al. 2020; Pereira et al. 2020) with positive repercussions 159 
on the nutrient contents (Santos et al. 2020) and biomass of plants under conditions of environmental stress 160 
(Fonseca et al. 2020). Therefore, this research aimed to answer if the foliar application of EBR (1) can delay the 161 
chlorophyll degradation and/or (2) to mitigate the oxidative stress on photosynthetic machinery in magnesium 162 
stressed soybean plants, evaluating the responses associated with nutrient concentrations, gas exchange, 163 
chlorophyll fluorescence and morphological parameters.  164 
 165 
 166 
 167 
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2. Materials and Methods 168 
Location and growth conditions  169 
The experiment was performed at the Campus of Paragominas of the Universidade Federal Rural da Amazônia, 170 
Paragominas, Brazil (2°55’ S, 47°34’ W). The study was conducted in a greenhouse with the temperature and 171 
humidity controlled. The minimum, maximum, and median temperatures were 23.1, 28.7 and 26.3 °C, 172 
respectively. The relative humidity during the experimental period varied between 60% and 80%. 173 
 174 
Plants, containers and acclimation 175 
Seeds of Glycine max var. M8644RR Monsoy™ were germinated and grown in 1.2-L pots filled with a mixed 176 
substrate of sand and vermiculite at a ratio of 3:1. The plants were cultivated under semi-hydroponic conditions 177 
containing 500 mL of distilled water for four days. A nutritive solution described by Pereira et al. (2019) was used 178 
to plant nutrition, with ionic strength beginning at 50% (8th day) and later modified to 100% after two days (10th 179 
day). After this period, the nutritive solution remained at total ionic strength. 180 
 181 
Experimental design 182 
The experiment followed a completely randomized factorial design with two concentrations of 24-Epibrassinolide 183 
(0 and 100 nM EBR, described as - EBR and + EBR, respectively) and three Mg supplies (0.0225, 2.25 and 225 184 
mM Mg, described as low, control and high supply of Mg). With five replicates for each of six treatments, a total 185 
of 30 experimental units were used in the experiment, with one plant in each unit.  186 
 187 
24-epibrassinolide (EBR) preparation and application 188 
Twelve-day-old plants were sprayed with 24-epibrassinolide (EBR) or Milli-Q water (containing a proportion of 189 
ethanol that was equal to that used to prepare the EBR solution) at 5-day intervals until day 35. The 0 and 100 nM 190 
EBR (Sigma-Aldrich, USA) solutions were prepared by dissolving the solute in ethanol followed by dilution with 191 
Milli-Q water [ethanol:water (v/v) = 1:10,000] (Ahammed et al. 2013). 192 
 193 
Plant conduction and Mg supplies 194 
Plants received the following macro- and micronutrients contained in the nutrient solution in agreement with 195 
Pereira et al. (2019). For Mg treatments, MgCl2 was used at concentrations of 0.0225 mM (low) and 2.25 mM 196 
(control) and 225 mM (high) applied over 10 days (days 25–35 after the start of the experiment). During the study, 197 
the nutrient solutions were changed at 07:00 h at 3-day intervals, with the pH adjusted to 5.5 using HCl or NaOH. 198 
On day 35 of the experiment, physiological and morphological parameters were measured for all plants, and leaf 199 
tissues were harvested for biochemical and nutritional analyses. 200 
Determining of Mg and nutrients 201 
Milled samples (100 mg) of root, stem and leaf tissues were pre-digested using conical tubes (50 mL) with 2 ml of 202 
sub boiled HNO3. Subsequently, 8 ml of a solution containing 4 ml of H2O2 (30% v/v) and 4 ml of ultra-pure water 203 
were added, and transferred to a Teflon digestion vessel in agreement with Paniz et al. (2018). The determination 204 
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of Mg, K, Ca, S, Mn, Cu and B were performed using an inductively coupled plasma mass spectrometer (model 205 
ICP-MS 7900; Agilent).  206 
 207 
Measurement of chlorophyll fluorescence and gas exchange 208 
Chlorophyll fluorescence was measured in fully expanded leaves under light using a modulated chlorophyll 209 
fluorometer (model OS5p; Opti-Sciences). Preliminary tests determined the location of the leaf, the part of the leaf 210 
and the time required to obtain the greatest Fv/Fm ratio; therefore, the acropetal third of the leaves, which was the 211 
middle third of the plant and was adapted to the dark for 30 min, was used in the evaluation. The intensity and 212 
duration of the saturation light pulse were 7.500 µmol m–2 s–1 and 0.7 s, respectively. Gas exchange was evaluated 213 
in all plants and measured in the expanded leaves in the middle region of the plant using an infrared gas analyser 214 
(model LCPro+; ADC BioScientific) in a chamber under constant CO2, photosynthetically active radiation, air-215 
flow rate and temperature conditions at 360 μmol mol-1 CO2, 800 μmol photons m-2 s-1, 300 µmol s-1 and 28 °C, 216 
respectively, between 10:00 and 12:00 h. 217 
 218 
Determination of the antioxidant enzymes, superoxide and soluble proteins 219 
Antioxidant enzymes (SOD, CAT, APX, and POX), superoxide, and soluble proteins were extracted from leaf 220 
tissues according to the method of Badawi et al. (2004). The total soluble proteins were quantified using the 221 
methodology described by Bradford (1976). The SOD assay was measured at 560 nm (Giannopolitis and Ries 222 
1977), and the SOD activity was expressed in mg–1 protein. The CAT assay was detected at 240 nm (Havir and 223 
McHale 1987), and the CAT activity was expressed in μmol H2O2 mg–1 protein min–1. The APX assay was 224 
measured at 290 nm (Nakano and Asada 1981), and the APX activity was expressed in μmol AsA mg–1 protein 225 
min–1. The POX assay was detected at 470 nm (Cakmak and Marschner 1992), and the activity was expressed in 226 
μmol tetraguaiacol mg–1 protein min–1. O2- was measured at 530 nm (Elstner and Heupel 1976). 227 
 228 
Quantification of hydrogen peroxide, malondialdehyde and electrolyte leakage 229 
Stress indicators (H2O2 and MDA) were extracted using the methodology described by Wu et al. (2006). H2O2 was 230 
measured using the procedures described by Velikova et al. (2000). MDA was determined by the method of 231 
Cakmak and Horst (1991) using an extinction coefficient of 155 mM-1 cm-1. EL was measured according to Gong 232 
et al. (1998) and calculated by the formula EL (%) = (EC1/EC2) × 100. 233 
 234 
Determination of photosynthetic pigments and biomass 235 
Chlorophyll and carotenoid determinations were performed using a spectrophotometer (model UV-M51; Bel 236 
Photonics) according to the methodology of Lichtenthaler and Buschmann (2001). The biomass of roots and 237 
shoots was measured based on constant dry weights (g) after drying in a forced-air ventilation oven at 65 °C. 238 
 239 
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Data analysis  240 
The data were subjected to an analysis of variance, and significant differences between the means were determined 241 
using the Scott-Knott test at a probability level of 5% (Steel et al. 2006). Standard deviations were calculated for 242 
each treatment. 243 
 244 
3. Results 245 
EBR maximizes Mg and nutrient contents in plants grown with low Mg supply 246 
The low and high Mg supplies occasioned interferences on contents of this element in the tissues of the root, stem 247 
and leaf (Table 1). Plants sprayed with EBR and exposed to low Mg presented increases in Mg contents of 14% 248 
(root), 68% (stem) and 100% (leaf), when compared to equal treatment without EBR. Interestingly, plants with 249 
high Mg + EBR had decreases in root, stem and leaf tissues of 18%, 12% and 7%, in this order, compared with 250 
equal treatment in the absence of EBR. To nutrient contents, plants exposed to low and high Mg had reductions in 251 
tissues evaluated (Table 2). However, plants submitted to low Mg supply and sprayed with EBR increased the K, 252 
Ca, S, Mn, Cu and Bo contents in 3%, 30%, 4%, 19%, 45% and 34% (root); 3%, 13%, 1%, 5%, 6% and 9% 253 
(stem); 20%, 4%, 3%, 2%, 3% and 20% (leaf), respectively, compared to the same treatment without EBR. High 254 
Mg + EBR treatment promoted also increases in K, Ca, S, Mn, Cu and Bo contents of 25%, 31%, 15%, 9%, 19% 255 
and 43% in roots, in this order, 14%, 16 %, 8%, 5%, 5% and 10% in stems and 3%, 4%, 3%, 11%, 10% and 24% 256 
in leaves, compared to the same treatment in the absence of EBR. 257 
 258 
Steroid delays chlorophyll degradation and stimulates the photosynthetic machinery in plants exposed to 259 
magnesium stress 260 
Low and high supplies of Mg resulted in reductions in Chl a, Chl b, Total Chl and Car values (Table 5) and 261 
increases in Chl a/Chl b and Total Chl/Car ratios. Under low Mg with EBR, the variables Chl b, Total Chl and Car 262 
had increases of 32%, 7% and 33%, respectively. To high Mg + EBR the increments were of 1%, 31%, 9% and 263 
53% for Chl a, Chl b, Total Chl and Car, in this order, when compared to the same treatment without EBR. For 264 
Chl a/Chl b, under low and high Mg both with EBR, decreases of 24% and 19% were detected, in this order. In the 265 
Total Chl/Car ratio were verified reductions in low and high Mg combined with EBR of 20% and 29%, 266 
respectively. To chlorophyll fluorescence, plants with low and high Mg supplies expressed decreases (P<0.05) in 267 
Fm, Fv and Fv/Fm values (Fig. 1), in relation to control treatment, with the exception of F0, which did not show 268 
significant changes in the treatment with low Mg. In Fm, the EBR application induced increments of 8% and 44% 269 
in low and high supplies, respectively, when related to the same treatment without EBR. In Fv, plants under low 270 
and high Mg supplementation and sprayed with EBR had increases of 10% and 128%, in the same order. In Fv/Fm, 271 
the low Mg supply with EBR increased by 2%, while the high Mg + EBR treatment showed an increase of 61%, 272 
compared to the equal treatments without EBR. In relation to photosystem II, plants exposed to low and high Mg 273 
suffered negative interferences (Table 3). However, plants exposed to low Mg and treated with 100 nM EBR had 274 
increases of 9% and 9% for ΦPSII and ETR, respectively, and decreases in the values of EXC (3%) and ETR/PN 275 
(6%), compared to the same treatment without EBR. In relation to high Mg with EBR, there were increases of 276 
43%, 27%, 50% for ΦPSII, qP and ETR, respectively and decreases in the values of NPQ (19%) and EXC (6%), 277 
compared to the same treatment in the absence of EBR. To gas exchange, low and high Mg provoked deleterious 278 
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effects (Table 3). However, the EBR application in plants with low Mg resulted in increases for PN, WUE and 279 
PN/Ci of 16%, 23% and 120%, respectively, and a decrease of 47% for Ci, when compared to the same treatment 280 
without EBR. While the high Mg + EBR treatment, the values of PN, E, gs, WUE and PN/Ci were increased by 281 
33%, 7%, 9%, 22% and 25%, respectively, and in Ci a reduction of 7%. 282 
 283 
Antioxidant enzymes control the oxidative stress generated by low and high Mg supplies 284 
Plants exposed to low and high Mg had increases (P<0.05) in SOD, CAT, APX and POX (Fig. 2). The application 285 
of 100 nM EBR in plants under low Mg caused increases of 18%, 22%, 55%, and 39%, respectively, compared to 286 
the low Mg + 0 nM EBR, while high Mg with EBR treatment occurred significant increases in SOD (37%), CAT 287 
(34%), APX (48%) and POX (49%) activities, compared to the same treatment in the absence of EBR. To stress 288 
indicators (Fig. 3), plants exposed to low and high Mg supplies presented increases. However, plants with low Mg 289 
supply and 100 nM EBR suffered significant reductions in O2- (21%), H2O2 (10%) and MDA (28%), compared to 290 
the low Mg and 0 nM EBR. In relation to high Mg supply combined with EBR, occurred significant decreases in 291 
O2- (17%), H2O2 (18%), MDA (42%) and EL (10%), compared to the same treatment in the absence of EBR. 292 
 293 
EBR reduced the deleterious effects provoked by the Mg stress on biomass 294 
The low and high Mg supplies promoted reductions in morphological parameters, if compared to control treatment 295 
(Fig. 4). In low Mg + EBR treatment, increases of 1%, 13% and 3% were detected for LDM, RDM and TDM, 296 
respectively, compared to the low Mg + 0 nM EBR treatment. High Mg + EBR treatment had increments in LDM, 297 
RDM and TDM of 2%, 1% and 2%, in this order. 298 
 299 
4. Discussion 300 
Plants exposed to low Mg and sprayed with EBR presented increases in Mg contents, suggesting that this steroid 301 
improved the absorption, transport and accumulation of Mg in tissues evaluated. EBR probably improved Mg 302 
transport due to increased activity of the H+-ATPase enzyme (Song et al. 2016a), responsible by the active 303 
transport of cations and protons at the cellular level through membrane, forming an essential electrochemical 304 
gradient of protons to maintain ionic balance in higher plants (Falhof et al. 2016). Our results also suggest that 305 
EBR maximized the Mg absorption, activating the expression of genes that encode high-affinity transport proteins 306 
for Mg2+ (Gransee and Führs 2013), including the proteins of the AtMRS2/AtMGT family, in which they are known 307 
as the main membrane transporters in the root and shoot tissues (Bose et al. 2013). MGT1, MGT3, MGT4, MGT5 308 
and MGT6 proteins have been identified in Arabidopsis thaliana (Yan et al. 2018), Brassica napus (Sun et al. 309 
2019), Oryza  (Chen and Ma 2013) and Cucurbita moschata  (Huang et al. 2016), which comprise the main 310 
transporters expressed in the membranes of the root cells. Therefore, those responsible for capturing and 311 
distributing Mg2+ under low Mg concentrations. Concomitantly, EBR increased the xylem loading efficiency, 312 
through increments in RMD and RDT, favoring the simplistic transport to the vascular system and improving the 313 
upward transport of Mg in the plants (Huang et al. 2019). On the other hand, exogenous EBR reduced the toxic 314 
effects of Mg, reducing the Mg content in tissues exposed to high Mg supply, related to the regulation of Mg2+/H+ 315 
transporters for the vacuole, identified as responsible for the osmotic adjustment in conditions of Mg excess (Conn 316 
et al. 2011; Waters 2011), combined with the protective roles of this steroid, maintaining the membrane integrity 317 
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(Yue et al. 2019). Yuan et al. (2015) investigating the EBR effects (0.1 µM) on uptake and ion distribution in 318 
Cucumis sativus plants stressed with Ca (NO3)2 (80 mM) obtained decreases and increases in Ca and Mg contents, 319 
respectively. Karlidag et al. (2011) verified that Fragaria × ananassa plants exposed to salinity (35 mM NaCl) 320 
suffered reductions in Mg contents in roots and leaves, however EBR treatments (0.5 and 1.0 µM) promoted 321 
significant increases in the contents of this macronutrient. 322 

Plants submitted to low and high Mg concentrations and sprayed with 100 nM EBR had increases in 323 
contents of macronutrient (K, Ca and S) and micronutrients (Mn, Cu, and Bo). These results are probably related 324 
to the increments promoted by the EBR on root structures, because this steroid regulates the root meristem size, 325 
development of root bundles, formation of root hairs and lateral root initiation, providing increases in root contact 326 
surface exposed to the substrate and potentiating the uptake and transport of nutrients by the xylem from the root 327 
to shoot (Fàbregas et al. 2010; Noh et al. 2015; Wei and Li 2016). Additionally, our study revealed that EBR 328 
mitigated the negative impacts of the Mg concentrations (low and high) on ionic homeostasis of these elements, 329 
probably regulating transporters linked to K+ (SKOR, AKT / KAT and HAK / KUP), Ca2+ (Ca2+ channel, Ca2+/H+ 330 
and Ca2+-ATPase), SO42- (GmSULTR1; 2b and H+/ SO42-), Mn2+ (OsNRAMP3), Cu2+ (COPT1, Cu/ZnSOD and 331 
FeSOD) and H3BO3 (BOR1), and optimizing the transport process and assimilation of ions linked to the 332 
photosynthetic process and constitution of antioxidant enzymes (Ahmad and Maathuis 2014; Ding et al. 2016; 333 
Gaspar 2011; Herrera-Rodríguez et al. 2010; Siddiqui et al. 2018; Wang et al. 2016a; Yang et al. 2013), in which 334 
future studies are essential to elucidate these informations. 335 

K plays important roles connected to osmotic regulation of plants and stomatal mechanism, directly 336 
influencing on gas exchange (Jákli et al. 2017). Ca has a structural function in membranes and cell wall (Hepler 337 
and Winship 2010), reactions involving O2 in Photosystem II (Yachandra and Yano 2011), and stomatal regulation 338 
(Dodd et al. 2010). S is absorbed by the plant as sulfate, and subsequently reduced and incorporated into amino 339 
acids, such as cysteine (Cys), in which it is the precursor of several compounds containing reduced S, such as 340 
glutathione (GSH), an antioxidant enzyme that participates in the removal of H2O2 in excess. In parallel, Cys are 341 
fundamental in the control of redox status in chloroplasts (Anjum et al. 2011). Mn-containing molecules are part 342 
of the catalytic center of the water decomposition complex in PSII and contribute to antioxidant metabolism, 343 
acting as a cofactor for the enzymes Mn-CAT and Mn-SOD (McAlpin et al. 2012; Shen 2015; Signorella et al. 344 
2018; Srivastava and Dubey 2011). Cu is a cofactor for plastocyanin (PC), an electron transporter in the lumen of 345 
thylacoids, and antioxidant enzymes, including Cu/Zn-SOD (Mohammadi et al. 2020; Ravet et al. 2011). 346 
Straltsova et al. (2015) testing three BRs analogs (24-epibrassinolide, 28- homobrassionolide or 24-347 
epicastasterone) induced gradual increases in free cytosolic Ca2+ in Arabidopsis thaliana root cells. Research 348 
conducted by Yan et al. (2015) indicated that BRs (10 nM) induced significant increase in cytosolic Ca2+ 349 
concentration in protoplasts from Zea mays mesophyll, as well as these authors provided that Ca2+ stimulated the 350 
BRs-induced antioxidant defense, more specifically SOD and APX enzymes. Ekinci et al. (2012) evaluating the 351 
EBR application (3 μM) in Lactuca sativa seedlings exposed to salt stress (100 mM NaCl) found increases in K, S, 352 
Mn, Cu and B contents, similar to results obtained in this study. 353 

EBR delayed the deleterious effects on photosynthetic pigments (Chl a, Chl b, Chl Total and Car) in 354 
plants exposed to Mg2+ stress, being these results explained by the reductions in oxidative damages generated by 355 
O2- and H2O2, detected in this research. Subsequently, higher efficiency of the PSII was verified, being confirmed 356 
by the increments in ΦPSII and ETR, suggesting that the EBR improved the structural organization of the thylakoid 357 
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membrane, maximizing the performance of the pigments and the energy distribution in the PSII (Dobrikova et al. 358 
2014). Plants under Mg deficiency and excess suffered reductions of photosynthetic pigments. Magnesium is a 359 
structural element, occupying the central position of the porphyrin ring of the chlorophyll molecules, it also acts as 360 
an activator or regulator of several kinases, such as ATPases and ribulose-1,5-bisphosphate carboxylase / 361 
oxygenase (RuBisCO), in which Mg2+ stress (high and low) can affect several physiological processes associated 362 
with chlorophyll biosynthesis, plant growth and development (Cakmak 2013; Zhou et al. 2011). Mg2+ is also 363 
important for stacking of the chloroplast granum, negatively compromising the photosynthetic performance of 364 
plants under low Mg2+ supply (Ceppi et al. 2012). Meireles and Brandão (2014) found reductions in Chl a, Chl b 365 
and Car levels and increases on H2O2 concentrations in two Coffea arabica cultivars exposed to Mg deficiency. 366 
Thussagunpanit et al. (2015) verified that the exogenous application of EBR (1 nM) alleviated losses related to 367 
Total Chl in Oryza sativa plants under heat stress (40/30 °C temperature day/night for seven days). Efimova et al. 368 
(2014) demonstrated that the EBR treatment (10-10 M) mitigated the inhibitory effects of salt stress (175 mM NaCl 369 
for seven days) in Brassica napus promoting increases in Chl a and Chl b levels, besides reduction in MDA, 370 
suggesting maintenance of membrane integrity. 371 

Exogenous EBR spray attenuated the negative impacts caused by low and high Mg supplies on Fm, Fv and 372 
Fv/Fm. These results indicate the beneficial effects of this steroid on the components of the thylacoid membrane 373 
(Farhat et al. 2015), increasing the proportion of oxidized quinone (QA) (Liu et al. 2017) and reducing the damages 374 
on photosynthetic apparatus (Talaat 2020), clearly demonstrating a reduction in photoinhibition and improvements 375 
in the photochemical efficiency of PSII reaction centers (Guo et al. 2016). Studies confirm that plants grown under 376 
Mg stress have negative impacts on the photochemical efficiency of PSII, reductions in photosynthetic pigments, 377 
disorganization of thylakoid membranes and inhibition of photosynthesis (Farhat et al. 2015; Huang et al. 2019, 378 
2016). Lima et al. (2018), evaluating the effects induced by the EBR application (100 nM) in young Eucalyptus 379 
urophylla plants exposed to Fe deficiency detected that this substance induced significant increases in Fm (48%) 380 
and Fv (78%), reducing the negative effects on chlorophyll fluorescence. Hussain et al. (2019) found that EBR 381 
increased the photochemical efficiency of Brassica juncea under Mn toxicity (150 mg kg-1), promoting an increase 382 
in Fv/Fm (25%), compared to the same treatment without EBR. 383 

Beneficial effects promoted by EBR in Fm, Fv and Fv/Fm in soybean plants submitted to low and high Mg 384 
supplies contributed to increases in ΦPSII, qP and ETR values, revealing that EBR improves the efficiency of 385 
photosystem II and the electron transference during photochemical reactions. This steroid maximized the 386 
fluorescence dissipation, facilitating the electrons flow into chloroplasts (Jiang et al. 2012), with a probable 387 
positive impact on the generation of ATP and NADPH, in which they are used in the next stage of CO2 fixation, 388 
more specifically in Calvin cycle (Kumari et al. 2017). EBR spray also caused reductions in NPQ and EXC in 389 
plants exposed to low and high Mg supplementations, evidencing that EBR promoted less dissipation of excitation 390 
energy in the form of heat and consequently improves the quantum fluorescence yield (Nath et al. 2013).This fact 391 
is very interesting, because the EBR alleviated energy losses (heat), caused by a high incidence of light energy and 392 
that often lead to photooxidation and damages to photosystems (Hu et al. 2013; Kangasjärvi et al. 2012; 393 
Nishiyama and Murata 2014; Siddiqui et al. 2018). Decrease in ETR/PN value occurred in the treatment with EBR 394 
and low Mg reveals that in situations of deficiency of this element, this steroid provides better use of electrons in 395 
photochemical activity and decreases the use of alternative electron drains, such as photorespiration and Mehler 396 
reactions (Fang et al. 2011; Krumova et al. 2013; Pereira et al. 2019). Similar results were confirmed by Zhang et 397 
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al. (2014) describing increases in ΦPSII and qP, but decreases in NPQ, after EBR treatments in Cucumis melo 398 
cultivars submitted to high temperatures. Wu et al. (2014) suggested that EBR may improve the protection 399 
mechanism of plants under cold stress by obtaining a reduction in NPQ in Solanum melongena seedlings treated 400 
with EBR (0.05 and 0.1 μM). Rodrigues et al. (2020) evaluating the effects of EBR spray (100 nM) in Glycine 401 
max plants exposed to low (0.25 μM) and high (2500 μM) Mn supplies obtained increases in ΦPSII (4%), qP (10%), 402 
ETR (4%) and EXC (3%). Yuan et al. (2012) investigating the benefits of the EBR application on the 403 
photosynthetic characteristics of Cucumis sativus under toxicity of 80 mM Ca (NO3)2 reported significant increases 404 
in ΦPSII and qP of plants sprayed with steroid (0.1 μM). 405 

EBR attenuated the negative effects caused by low and high Mg supplementations in gas exchange. In 406 
this context, plants exposed to low Mg and sprayed with EBR (100 nM) had increases in PN and PN/Ci and WUE, 407 
confirming the improvements promoted by EBR on photosynthetic machinery and CO2 uptake, evidenced by the 408 
increase in PN and reduction of Ci, suggesting higher activity of the RuBisCO enzyme, main enzyme involved 409 
during CO2 fixation in Calvin cycle (Pociecha et al. 2016). On the other hand, plants under Mg deficiency suffered 410 
a decline in PN, E, gs, and WUE, being these results related to impaired CO2 fixation, inducing electron 411 
accumulation unused and increased energy absorbed in chloroplasts, resulting in generation reactive oxygen 412 
species (ROS), which cause photooxidation and damages to the chlorophyll and chloroplast membranes 413 
(Kobayashi et al. 2013; Tang et al. 2012; Tränkner et al. 2016). Li et al. (2017) investigating the deleterious effects 414 
provoked by the Mg deficiency (0 mM MgSO4 for 16 weeks) on gas exchange and RuBisCO activity in Citrus 415 
sinensis seedlings described that plants under Mg deficiency suffered significant decreases in gs, RuBisCO and 416 
CO2 assimilation in lower leaves. Li et al. (2016) studying the roles triggered by the EBR endogenous on 417 
photosynthesis regulation and photosynthetic performance using three Solanum lycopersicum genotypes (dwarf 418 
mutant deficient to EBR biosynthesis, dwarf line efficient to EBR biosynthesis and wild plants), revealing that 419 
high endogenous levels of EBR induced increases in PN, E, gs, and PN/Ci, accompanied by higher capacity in vivo 420 
for carboxylation and regeneration of the RuBisCO enzyme, compared to mutant deficient to EBR and wild 421 
genotypes. Santos et al. (2018) investigating the effects connected to exogenous EBR spray (100 nM) in Glycine 422 
max plants exposed to Cd stress (500 μM) verified improvements in gas exchange, more specifically increases in 423 
PN, E, gs, WUE and PN/Ci. 424 

Gas exchange were maximized in plants under excess of Mg + EBR (100 nM), with increases in PN, E, gs, 425 
WUE, PN/Ci and decrease in Ci, in which these results can be explained by the positive impacts on stomatal 426 
performance, confirmed by the increase in the values of gs, SD and SI, previously detected in this study. 427 
Additionally, increase in gs facilitate CO2 absorption, with probable increase in RuBisCO activity (increase in de 428 
PN/Ci and decrease in Ci). Plants under high Mg and sprayed with EBR presented increase in WUE value, being 429 
this fact attributed to the increases in PN and E. In other words, WUE is the result of the relationship between PN 430 
and E, being associated with the stomatal mechanism the regulation of gas exchange and water use, therefore 431 
improving photosynthetic efficiency (Bertolli et al. 2012; Kim et al. 2012). Hayat et al. (2012) investigating the 432 
effect of foliar spraying of two EBR analogs (28-homobrassinolide and 24-epibrassinolide at 10-8 M) in 433 
Lycopersicon esculentum plants exposed to Cd toxicity verified benefits in photosynthetic attributes, more 434 
specifically increases in PN, gs, E and WUE. 435 

EBR promoted increases in the activities of the SOD, APX and POX enzymes in plants submitted to low 436 
and high Mg, revealing the beneficial effects promoted by the EBR, mitigating oxidative damages to photosystems 437 
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and membranes. These enzymes act in the antioxidant system, detoxifying membranes and reducing the impact 438 
generated by reactive oxygen species (ROS), such as H2O2 and O2- (Ramakrishna and Rao 2015). BRs are 439 
involved in the regulation of the antioxidant metabolism through the expression of antioxidant genes in Glycine 440 
max plants, such as Fe-SOD, Cu/ Zn-SOD, CAT1, APX1, APX2 and POX10 (Hamurcu et al. 2013; Hossain et al. 441 
2012; Kausar et al. 2012; Wang et al. 2016b; Wu et al. 2013). Activities of these enzymes improve the tolerance to 442 
oxidative stress (Ding et al. 2012; Hayat et al. 2012). Several abiotic stresses lead to ROS overproduction in 443 
plants, in which these compounds are highly reactive, and toxic, causing damages mainly to components of PSII, 444 
proteins, lipids, carbohydrates and DNA, resulting in oxidative stress (Gill and Tuteja 2010). The EBR promoted 445 
increases in the activities of SOD (43%), POX (17%) and CAT (29%) in a study with Arachis hypogea plants 446 
under Fe deficiency (Song et al. 2016b) and Arabidopsis thaliana under B toxicity (0.8 or 1.6 mM) (Surgun et al. 447 
2016). 448 

Mg stress (low and high) caused increases in the contents of O2- and H2O2, MDA and EL, but the 449 
exogenous EBR application (100 nM) promoted reductions in levels of these stress indicators. Under situations of 450 
low Mg, the activation state linked to RuBisCO enzyme and photochemical activity are reduced, limiting the CO2 451 
assimilation and the absorbed light energy for the transport of photosynthetic electrons, resulting in excess photons 452 
and subsequent overproduction of ROS (Yang et al. 2012). In other hand, high Mg generates high osmolarity, 453 
restricting the H2O molecules in the solution, resulting in ionic toxicity and consequent nutritional imbalances, 454 
mainly of Ca2+ and Mn2+ (Conn et al. 2011; Zhang et al. 2018). Several impacts are described in literature, 455 
including decreases in gs, negative interferences on electron transport into chloroplast, declining ETR and leading 456 
to ROS accumulation, damages to lipid membranes and other essential macromolecules, such as proteins and 457 
nucleic acids (Bose et al. 2014; Niu et al. 2018; Ozgur et al. 2013; Shabala et al. 2016). 458 

Reductions in O2-, H2O2, MDA and EL under low or high Mg supplies and sprayed with EBR indicate its 459 
function as a secondary messenger, inducing increases in the activities of antioxidant enzymes (SOD, CAT, APX 460 
and POX), and improving redox homeostasis ROS, thus contributing to membrane stability, integrity and 461 
permeability (Vardhini and Anjum 2015). Ding et al. (2012) evaluating the benefits of different concentrations of 462 
EBR (0, 0.025, 0.05, 0.1 and 0.2 mg dm-3 EBR) in Solanum melongena plants exposed to saline stress (90 mM 463 
NaCl) obtained reductions in O2- and H2O2, EL and MDA under concentration of 0.05 mg dm-3 EBR. Surgun et al. 464 
(2016) also obtained mitigation of oxidative stress generated by the B toxicity (1.60 mM H3BO3) after treatment 465 
with 1 μM EBR on Arabidopsis thaliana. 466 

EBR reduced the deleterious effects on plant biomass (LDM, RDM, SDM and TDM) caused by low and 467 
high Mg supplies, being explained by the benefits on nutrient contents and antioxidant system, combined with 468 
increments on photosynthetic pigments and gas exchange, positively modulating the biomass (Dalio et al. 2011). 469 
Huang et al. (2019) investigating the effects connected to Mg deficiency on Citrus sinensis found significant 470 
reductions in RDM (27%), SDM (25%) and TDM (26%), related to decreases in RDT and RDM, impacting the 471 
assimilation and transport of the nutrients, such as P, B, Cu and Fe, and decreases in physiological variables (PN, 472 
gs, E, Chl total and Fv/Fm). Lima and Lobato (2017) working with Vigna unguiculata plants under water deficit 473 
reported decreases in RDM, however the EBR spray (100 nM) promoted increases in LDM (11%), SDM (7%), 474 
RDM (10%) and TDM (10%), results directly related to the improvements promoted by EBR on gas exchange, 475 
presenting increases in PN (96%), E (24%), gs (33%), WUE (49%) and PN/Ci (141%). 476 
 477 
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5. Conclusion 478 
This research revealed that inadequate supplies of Mg (deficiency and excess) negatively interfered on 479 
photosynthetic pigments, chlorophyll fluorescence and gas exchange, being intrinsically related to inadequate Mg 480 
contents and intense oxidative stress. However, the foliar application of EBR delayed the chlorophyll degradation 481 
occasioned by the oxidative stress in plants under low and high Mg supplies, improving the activity of enzymes 482 
linked to the antioxidant mechanism (superoxide dismutase, catalase, ascorbate peroxidase and peroxidase), 483 
reducing the concentrations of superoxide and hydrogen peroxide into chloroplast. Concomitantly, plants sprayed 484 
with this steroid had increases in the contents of macronutrients and micronutrients, including Mg, which 485 
benefited the photochemical efficiency of photosystem II and gas exchange, because the Mg is the central element 486 
of the chlorophyll molecule, exercising central role during light capture. Therefore, these results indicate that the 487 
exogenous application of EBR increases the tolerance to deficiency/excess of Mg in soybean plants. 488 
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Figures 858 

 859 
Fig. 1. Minimal fluorescence yield of the dark-adapted state (F0), maximal fluorescence yield of the dark-adapted 860 
state (Fm), variable fluorescence (Fv) and maximal quantum yield of PSII photochemistry (Fv/Fm) in soybean plants 861 
sprayed with EBR and exposed to different Mg supplies. Columns with different letters indicate significant 862 
differences from the Scott-Knott test (P<0.05). Columns corresponding to means from five repetitions and 863 
standard deviations. 864 
 865 

 866 
 867 
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 868 
Fig. 2. Activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase 869 
(POX) in soybean plants sprayed with EBR and exposed to different Mg supplies. Columns with different letters 870 
indicate significant differences from the Scott-Knott test (P<0.05). Columns corresponding to means from five 871 
repetitions and standard deviations. 872 
 873 
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 883 
Fig. 3. Superoxide (O2-), hydrogen peroxide (H2O2), malondialdehyde (MDA) and electrolyte leakage (EL) in 884 
soybean plants sprayed with EBR and exposed to different Mg supplies. Columns with different letters indicate 885 
significant differences from the Scott-Knott test (P<0.05). Columns corresponding to means from five repetitions 886 
and standard deviations. 887 
 888 
 889 
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 890 
Fig. 4. Leaf dry matter (LDM), root dry matter (RDM), stem dry matter (SDM) and total dry matter (TDM) in 891 
soybean plants sprayed with EBR and exposed to different Mg supplies. Columns with different letters indicate 892 
significant differences from the Scott-Knott test (P<0.05). Columns corresponding to means from five repetitions 893 
and standard deviations. 894 
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Tables 911 
Table 1. Mg contents in soybean plants sprayed with EBR and exposed to different Mg supplies. 912 
EBR Mg supply Mg in root (mg g DM-1) Mg in stem (mg g DM-1) Mg in leaf (mg g DM-1) 
_ Low   9.58 ± 0.52Cb   1.46 ± 0.04Bb 1.08 ± 0.01Cb 
_ Control 13.71 ± 0.10Ba   1.70 ± 0.03Bb   3.53 ± 0.08Ba 
_ High 29.03 ± 0.19Aa 27.80 ± 0.41Aa 29.79 ± 0.35Aa 
+ Low 10.89 ± 0.40Ca   2.46 ± 0.03Ba 2.16 ± 0.02Ca 
+ Control 14.29 ± 0.47Ba   2.60 ± 0.03Ba 3.60 ± 0.05Ba 
+ High 23.94 ± 0.69Ab 24.59 ± 0.28Ab 27.73 ± 0.07Ab 
Mg = Magnesium. Columns with different uppercase letters between Mg supplies (low, control and high Mg supply under equal EBR level) and lowercase letters between 913 
EBR level (with and without EBR under equal Mg supply) indicate significant differences from the Scott-Knott test (P<0.05). Means ± SD, n = 5. 914 
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Table 2. Nutrient contents in soybean plants sprayed with EBR and exposed to different Mg supplies. 929 
EBR Mg supply K (mg g DM-1) Ca (mg g DM-1) S (mg g DM-1) Mn (µg g DM-1) Cu (µg g DM-1) Bo (µg g DM-1) 
Contents in root 
_ Low 39.37 ± 0.69Bb 14.93 ± 0.70Bb 2.50 ± 0.09Ba 507.17 ± 21.19Cb 9.05 ± 0.33Cb 28.73 ± 0.80Cb 
_ Control 41.90 ± 0.48Aa 23.83 ± 0.50Aa 2.69 ± 0.09Aa 585.73 ± 6.69Ab 15.68 ± 0.64Ab 39.76 ± 0.66Ab 
_ High 22.15 ± 0.25Cb   6.20 ± 0.20Cb 2.25 ± 0.03Cb 556.42 ± 17.65Bb 11.89 ± 0.40Bb 30.59 ± 0.79Bb 
+ Low 40.52 ± 0.53Ba 19.39 ± 0.51Ba 2.61 ± 0.09Aa 605.00 ± 8.31Ba 13.15 ± 0.74Ca 38.45 ± 0.89Ca 
+ Control 42.47 ± 0.43Aa 24.40 ± 0.04Aa 2.71 ± 0.07Aa 627.61 ± 8.48Aa 19.59 ± 0.33Aa 51.30 ± 0.93Aa 
+ High 27.65 ± 0.93Ca   8.15 ± 0.13Ca 2.59 ± 0.12Aa 606.13 ± 2.18Ba 14.16 ± 0.22Ba 43.89 ± 0.57Ba 
Contents in stem 
_ Low 50.91 ± 0.73Bb 13.83 ± 0.48bB 1.48 ± 0.02Ba     8.90 ± 0.37Ca   1.62 ± 0.07Bb 31.60 ± 0.19Bb 
_ Control 53.01 ± 0.46Ab 22.31 ± 0.28Ab 1.58 ± 0.03Ab 15.71 ± 0.31Aa 1.76 ± 0.01Ab 34.67 ± 0.41Ab 
_ High 37.85 ± 0.64Cb   6.59 ± 0.21Cb 1.31 ± 0.05Cb 10.73 ± 0.26Bb 1.72 ± 0.02Ab 24.50 ± 0.80Cb 
+ Low 52.38 ± 0.61Ba 15.64 ± 0.34Ba 1.50 ± 0.07Ba   9.33 ± 0.07Ca 1.72 ± 0.09Ca 34.52 ± 0.95Ba 
+ Control 55.89 ± 0.72Aa 23.14 ± 0.28Aa 1.64 ± 0.01Aa 16.19 ± 0.12Aa 1.91 ± 0.03Aa 35.74 ± 0.65Aa 
+ High 43.19 ± 0.48Ca   7.64 ± 0.16Ca 1.42 ± 0.04Ca 11.24 ± 0.64Ba  1.80 ± 0.02Ba 26.97 ± 0.18Ca 
Contents in leaf 
_ Low 28.21 ± 0.31Bb 13.24 ± 0.03Bb 2.84 ± 0.08Aa   56.47 ± 0.31Cb 1.48 ± 0.04Cb 44.04 ± 0.73Bb 
_ Control 30.12 ± 0.21Ab 21.19 ± 0.19Ab 2.89 ± 0.06Aa   65.23 ± 0.25Ab 1.73 ± 0.00Ab 51.18 ± 0.29Ab 
_ High 25.89 ± 0.29Cb 11.47 ± 0.27Cb 2.43 ± 0.06Ba 58.98 ± 0.23Bb 1.65 ± 0.04Bb 36.52 ± 0.33Cb 
+ Low 33.88 ± 0.13Aa 13.71 ± 0.24Ba 2.92 ± 0.10Aa 57.60 ± 0.27Ca 1.52 ± 0.01Ca 52.72 ± 0.63Ba 
+ Control 34.00 ± 0.46Aa 21.96 ± 0.17Aa 2.99 ± 0.06Aa 76.06 ± 0.84Aa 2.15 ± 0.03Aa 58.08 ± 0.41Aa 
+ High 26.66 ± 0.25Ba 11.90 ± 0.14Ca 2.50 ± 0.04Ba 65.21 ± 0.61Ba 1.82 ± 0.02Ba 45.26 ± 0.64Ca 
Mg = Magnesium; K = Potassium; Ca = Calcium; S = Sulfur; Mn = Manganese; Cu = Copper; Bo = Boron. Columns with different uppercase letters between Mg supplies 930 
(low, control and high Mg supply under equal EBR level) and lowercase letters between EBR level (with and without EBR under equal Mg supply) indicate significant 931 
differences from the Scott-Knott test (P<0.05). Means ± SD, n = 5. 932 
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Table 3. Chlorophyll fluorescence in soybean plants sprayed with EBR and exposed to different Mg supplies. 934 
EBR Mg supply ΦPSII qP NPQ ETR (µmol m-2 s-1) EXC (µmol m-2 s-1) ETR/PN 
_ Low 0.23 ± 0.01Ab 0.33 ± 0.01Aa 0.62 ± 0.03Ba 34.9 ± 0.9Ab 0.70 ± 0.01Ba 2.17 ± 0.10Ba 
_ Control 0.24 ± 0.01Ab 0.33 ± 0.01Ab 0.59 ± 0.05Ba 36.1 ± 1.8Ab 0.70 ± 0.01Ba 1.99 ± 0.13Ba 
_ High 0.07 ± 0.01Bb 0.15 ± 0.01Bb 0.83 ± 0.05Aa 10.3 ± 0.5Bb 0.81 ± 0.02Aa 6.63 ± 0.50Ab 
+ Low 0.25 ± 0.01Ba 0.33 ± 0.02Ba 0.62 ± 0.04Aa 38.1 ± 2.1Ba 0.68 ± 0.02Ba 2.05 ± 0.11Ba 
+ Control 0.31 ± 0.01Aa 0.45 ± 0.03Aa 0.48 ± 0.03Bb 46.4 ± 2.8Aa 0.62 ± 0.02Cb 2.36 ± 0.18Ba 
+ High 0.10 ± 0.01Ca 0.19 ± 0.01Ca 0.67 ± 0.03Ab 15.5 ± 1.1Ca 0.77 ± 0.03Ab 7.63 ± 0.56Aa 

ΦPSII = Effective quantum yield of PSII photochemistry; qP = Photochemical quenching coefficient; NPQ = Nonphotochemical quenching; ETR = Electron transport rate; 935 
EXC = Relative energy excess at the PSII level; ETR/PN = Ratio between the electron transport rate and net photosynthetic rate. Columns with different uppercase letters 936 
between Mg supplies (low, control and high Mg supply under equal EBR level) and lowercase letters between EBR level (with and without EBR under equal Mg supply) 937 
indicate significant differences from the Scott-Knott test (P<0.05). Means ± SD, n = 5.  938 
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Table 4. Gas exchange in soybean plants sprayed with EBR and exposed to different Mg supplies. 952 
EBR Mg supply PN (µmol m-2 s-1) E (mmol m-2 s-1) gs (mol m-2 s-1) Ci (µmol mol-1) WUE (µmolmmol–1) PN/Ci (µmol m-2 s-1 Pa-1) 
_ Low 16.0 ± 0.6Bb 2.28 ± 0.11Ba 0.21 ± 0.01Ba 241 ± 6Ba 7.06 ± 0.21Ab 0.066 ± 0.003Bb 
_ Control 18.1 ± 0.6Ab 2.47 ± 0.20Aa 0.24 ± 0.01Aa 224 ± 6Ca 7.38 ± 0.56Ab 0.081 ± 0.004Ab 
_ High   1.5 ± 0.1Ca 1.70 ± 0.13Ca 0.11 ± 0.01Ca 378 ± 8Aa 0.92 ± 0.08Ba 0.004 ± 0.000Ca 
+ Low 18.5 ± 0.7Ba 2.14 ± 0.10Aa 0.12 ± 0.01Bb 128 ± 6Bb 8.70 ± 0.41Aa 0.145 ± 0.011Ba 
+ Control 19.7 ± 0.7Aa 2.19 ± 0.05Ab 0.14 ± 0.01Ab 100 ± 6Cb 9.01 ± 0.33Aa 0.197 ± 0.013Aa 
+ High   2.0 ± 0.1Ca 1.82 ± 0.16Ba 0.12 ± 0.01Ba 353 ± 16Ab 1.12 ± 0.09Ba 0.005 ± 0.000Ca 

PN = Net photosynthetic rate; E = Transpiration rate; gs = Stomatal conductance; Ci = Intercellular CO2 concentration; WUE = Water-use efficiency; PN/Ci = Carboxylation 953 
instantaneous efficiency. Columns with different uppercase letters between Mg supplies (low, control and high Mg supply under equal EBR level) and lowercase letters 954 
between EBR level (with and without EBR under equal Mg supply) indicate significant differences from the Scott-Knott test (P<0.05). Means ± SD, n = 5. 955 
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Table 5. Photosynthetic pigments in soybean plants sprayed with EBR and exposed to different Mg supplies.  970 
EBR Mg supply Chl a (mg g–1 FM) Chl b (mg g–1 FM) Total Chl (mg g–1 FM) Car (mg g–1 FM) Ratio Chl a/Chl b Ratio Total Chl/Car 
_ Low 6.37 ± 0.37Ba 1.93 ± 0.14Cb   8.30 ± 0.45Ba 0.27 ± 0.01Cb 3.30 ± 0.20Aa 31.18 ± 1.65Aa 
_ Control 8.46 ± 0.36Ab 3.26 ± 0.13Ab 11.72 ± 0.25Ab 0.49 ± 0.02Ab 2.60 ± 0.20Ba 24.24 ± 1.70Ba 
_ High 8.35 ± 0.26Aa 2.79 ± 0.06Bb 11.14 ± 0.24Ab 0.38 ± 0.03Bb 3.00 ± 0.14Aa 29.57 ± 2.49Aa 
+ Low 6.38 ± 0.87Ca 2.54 ± 0.17Ca   8.92 ± 0.26Ca 0.36 ± 0.04Ca 2.51 ± 0.30Ab 24.81 ± 1.98Ab 
+ Control 9.88 ± 0.18Aa 5.00 ± 0.13Aa 14.88 ± 0.31Aa 0.74 ± 0.06Aa 1.98 ± 0.02Bb 20.30 ± 1.93Bb 
+ High 8.45 ± 0.21Ba 3.65 ± 0.79Ba 12.10 ± 0.83Ba 0.58 ± 0.02Ba 2.42 ± 0.61Ab 20.96 ± 1.96Bb 

Chl a = Chlorophyll a; Chl b = Chlorophyll b; Total chl = Total chlorophyll; Car = Carotenoids. Columns with different uppercase letters between Mg supplies (low, 971 
control and high Mg supply under equal EBR level) and lowercase letters between EBR level (with and without EBR under equal Mg supply) indicate significant 972 
differences from the Scott-Knott test (P<0.05). Means ± SD, n = 5. 973 
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